Computational modelling in single-cell cancer genomics: methods and future directions
Single-cell technologies have revolutionized biomedical research by enabling scalable measurement of the genome, transcriptome, and proteome of multiple systems at single-cell resolution. Now widely applied to cancer models, these assays offer new insights into tumour heterogeneity, which underlies cancer initiation, progression, and relapse. However, the large quantities of high-dimensional, noisy data produced by single-cell assays can complicate data analysis, obscuring biological signals with technical artefacts. In this review article, we outline the major challenges in analyzing single-cell cancer genomics data and survey the current computational tools available to tackle these. We further outline unsolved problems that we consider major opportunities for future methods development to help interpret the vast quantities of data being generated.
READ FULL TEXT