Computational Complexity of Synchronization under Sparse Regular Constraints

07/30/2021 ∙ by Stefan Hoffmann, et al. ∙ 0

The constrained synchronization problem (CSP) asks for a synchronizing word of a given input automaton contained in a regular set of constraints. It could be viewed as a special case of synchronization of a discrete event system under supervisory control. Here, we study the computational complexity of this problem for the class of sparse regular constraint languages. We give a new characterization of sparse regular sets, which equal the bounded regular sets, and derive a full classification of the computational complexity of CSP for letter-bounded regular constraint languages, which properly contain the strictly bounded regular languages. Then, we introduce strongly self-synchronizing codes and investigate CSP for bounded languages induced by these codes. With our previous result, we deduce a full classification for these languages as well. In both cases, depending on the constraint language, our problem becomes NP-complete or polynomial time solvable.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.