Computational Barriers to Estimation from Low-Degree Polynomials
One fundamental goal of high-dimensional statistics is to detect or recover structure from noisy data. In many cases, the data can be faithfully modeled by a planted structure (such as a low-rank matrix) perturbed by random noise. But even for these simple models, the computational complexity of estimation is sometimes poorly understood. A growing body of work studies low-degree polynomials as a proxy for computational complexity: it has been demonstrated in various settings that low-degree polynomials of the data can match the statistical performance of the best known polynomial-time algorithms for detection. While prior work has studied the power of low-degree polynomials for the task of detecting the presence of hidden structures, it has failed to address the estimation problem in settings where detection is qualitatively easier than estimation. In this work, we extend the method of low-degree polynomials to address problems of estimation and recovery. For a large class of "signal plus noise" problems, we give a user-friendly lower bound for the best possible mean squared error achievable by any degree-D polynomial. To our knowledge, this is the first instance in which the low-degree polynomial method can establish low-degree hardness of recovery problems where the associated detection problem is easy. As applications, we give a tight characterization of the low-degree minimum mean squared error for the planted submatrix and planted dense subgraph problems, resolving (in the low-degree framework) open problems about the computational complexity of recovery in both cases.
READ FULL TEXT