Computation of Miura surfaces for general Dirichlet boundary conditions

02/17/2022
by   Frédéric Marazzato, et al.
0

A nonlinear partial differential equation (PDE) that models the possible shapes that a periodic Miura tessellation can take in the homogenization limit has been established recently and solved only in specific cases. In this paper, the existence and uniqueness of a solution to the PDE is proved for general Dirichlet boundary conditions. Then a H^2-conforming discretization is introduced to approximate the solution of the PDE and a fixed point algorithm is proposed to solve the associated discrete problem. A convergence proof for the method is given as well as a convergence rate. Finally, numerical experiments show the robustness of the method and that non trivial shapes can be achieved using periodic Miura tessellations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset