Compressive MR Fingerprinting reconstruction with Neural Proximal Gradient iterations

06/27/2020
by   Dongdong Chen, et al.
39

Consistency of the predictions with respect to the physical forward model is pivotal for reliably solving inverse problems. This consistency is mostly un-controlled in the current end-to-end deep learning methodologies proposed for the Magnetic Resonance Fingerprinting (MRF) problem. To address this, we propose ProxNet, a learned proximal gradient descent framework that directly incorporates the forward acquisition and Bloch dynamic models within a recurrent learning mechanism. The ProxNet adopts a compact neural proximal model for de-aliasing and quantitative inference, that can be flexibly trained on scarce MRF training datasets. Our numerical experiments show that the ProxNet can achieve a superior quantitative inference accuracy, much smaller storage requirement, and a comparable runtime to the recent deep learning MRF baselines, while being much faster than the dictionary matching schemes. Code has been released at https://github.com/edongdongchen/PGD-Net.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset