Compressive Change Retrieval for Moving Object Detection

08/06/2016
by   Tomoya Murase, et al.
0

Change detection, or anomaly detection, from street-view images acquired by an autonomous robot at multiple different times, is a major problem in robotic mapping and autonomous driving. Formulation as an image comparison task, which operates on a given pair of query and reference images is common to many existing approaches to this problem. Unfortunately, providing relevant reference images is not straightforward. In this paper, we propose a novel formulation for change detection, termed compressive change retrieval, which can operate on a query image and similar reference images retrieved from the web. Compared to previous formulations, there are two sources of difficulty. First, the retrieved reference images may frequently contain non-relevant reference images, because even state-of-the-art place-recognition techniques suffer from retrieval noise. Second, image comparison needs to be conducted in a compressed domain to minimize the storage cost of large collections of street-view images. To address the above issues, we also present a practical change detection algorithm that uses compressed bag-of-words (BoW) image representation as a scalable solution. The results of experiments conducted on a practical change detection task, "moving object detection (MOD)," using the publicly available Malaga dataset validate the effectiveness of the proposed approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset