Compression for Multiple Reconstructions
In this work we propose a method for optimizing the lossy compression for a network of diverse reconstruction systems. We focus on adapting a standard image compression method to a set of candidate displays, presenting the decompressed signals to viewers. Each display is modeled as a linear operator applied after decompression, and its probability to serve a network user. We formulate a complicated operational rate-distortion optimization trading-off the network's expected mean-squared reconstruction error and the compression bit-cost. Using the alternating direction method of multipliers (ADMM) we develop an iterative procedure where the network structure is separated from the compression method, enabling the reliance on standard compression techniques. We present experimental results showing our method to be the best approach for adjusting high bit-rate image compression (using the state-of-the-art HEVC standard) to a set of displays modeled as blur degradations.
READ FULL TEXT