Compressing Heavy-Tailed Weight Matrices for Non-Vacuous Generalization Bounds

05/23/2021
by   John Y. Shin, et al.
0

Heavy-tailed distributions have been studied in statistics, random matrix theory, physics, and econometrics as models of correlated systems, among other domains. Further, heavy-tail distributed eigenvalues of the covariance matrix of the weight matrices in neural networks have been shown to empirically correlate with test set accuracy in several works (e.g. arXiv:1901.08276), but a formal relationship between heavy-tail distributed parameters and generalization bounds was yet to be demonstrated. In this work, the compression framework of arXiv:1802.05296 is utilized to show that matrices with heavy-tail distributed matrix elements can be compressed, resulting in networks with sparse weight matrices. Since the parameter count has been reduced to a sum of the non-zero elements of sparse matrices, the compression framework allows us to bound the generalization gap of the resulting compressed network with a non-vacuous generalization bound. Further, the action of these matrices on a vector is discussed, and how they may relate to compression and resilient classification is analyzed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset