Compressibility of Distributed Document Representations
Contemporary natural language processing (NLP) revolves around learning from latent document representations, generated either implicitly by neural language models or explicitly by methods such as doc2vec or similar. One of the key properties of the obtained representations is their dimension. Whilst the commonly adopted dimensions of 256 and 768 offer sufficient performance on many tasks, it is many times unclear whether the default dimension is the most suitable choice for the subsequent downstream learning tasks. Furthermore, representation dimensions are seldom subject to hyperparameter tuning due to computational constraints. The purpose of this paper is to demonstrate that a surprisingly simple and efficient recursive compression procedure can be sufficient to both significantly compress the initial representation, but also potentially improve its performance when considering the task of text classification. Having smaller and less noisy representations is the desired property during deployment, as orders of magnitude smaller models can significantly reduce the computational overload and with it the deployment costs. We propose CoRe, a straightforward, representation learner-agnostic framework suitable for representation compression. The CoRe's performance is showcased and studied on a collection of 17 real-life corpora from biomedical, news, social media, and literary domains. We explored CoRe's behavior when considering contextual and non-contextual document representations, different compression levels, and 9 different compression algorithms. Current results based on more than 100,000 compression experiments indicate that recursive Singular Value Decomposition offers a very good trade-off between the compression efficiency and performance, making CoRe useful in many existing, representation-dependent NLP pipelines.
READ FULL TEXT