Compressed Learning: A Deep Neural Network Approach

10/30/2016
by   Amir Adler, et al.
0

Compressed Learning (CL) is a joint signal processing and machine learning framework for inference from a signal, using a small number of measurements obtained by linear projections of the signal. In this paper we present an end-to-end deep learning approach for CL, in which a network composed of fully-connected layers followed by convolutional layers perform the linear sensing and non-linear inference stages. During the training phase, the sensing matrix and the non-linear inference operator are jointly optimized, and the proposed approach outperforms state-of-the-art for the task of image classification. For example, at a sensing rate of 1 X 28 pixels images), the classification error for the MNIST handwritten digits dataset is 6.46

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset