Complexity Results for Implication Bases of Convex Geometries

11/15/2022
by   Todd Bichoupan, et al.
0

A convex geometry is finite zero-closed closure system that satisfies the anti-exchange property. Complexity results are given for two open problems related to representations of convex geometries using implication bases. In particular, the problem of optimizing an implication basis for a convex geometry is shown to be NP-hard by establishing a reduction from the minimum cardinality generator problem for general closure systems. Furthermore, even the problem of deciding whether an implication basis defines a convex geometry is shown to be co-NP-complete by a reduction from the Boolean tautology problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro