Complexity Results for Implication Bases of Convex Geometries

11/15/2022
by   Todd Bichoupan, et al.
0

A convex geometry is finite zero-closed closure system that satisfies the anti-exchange property. Complexity results are given for two open problems related to representations of convex geometries using implication bases. In particular, the problem of optimizing an implication basis for a convex geometry is shown to be NP-hard by establishing a reduction from the minimum cardinality generator problem for general closure systems. Furthermore, even the problem of deciding whether an implication basis defines a convex geometry is shown to be co-NP-complete by a reduction from the Boolean tautology problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro