Complexity of Training ReLU Neural Network

09/27/2018
by   Digvijay Boob, et al.
0

In this paper, we explore some basic questions on the complexity of training Neural networks with ReLU activation function. We show that it is NP-hard to train a two- hidden layer feedforward ReLU neural network. If dimension d of the data is fixed then we show that there exists a polynomial time algorithm for the same training problem. We also show that if sufficient over-parameterization is provided in the first hidden layer of ReLU neural network then there is a polynomial time algorithm which finds weights such that output of the over-parameterized ReLU neural network matches with the output of the given data

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro