Complexity of Reachability Problems in Neural Networks

06/09/2023
by   Adrian Wurm, et al.
0

In this paper we investigate formal verification problems for Neural Network computations. Various reachability problems will be in the focus, such as: Given symbolic specifications of allowed inputs and outputs in form of Linear Programming instances, one question is whether valid inputs exist such that the given network computes a valid output? Does this property hold for all valid inputs? The former question's complexity has been investigated recently by Sälzer and Lange for nets using the Rectified Linear Unit and the identity function as their activation functions. We complement their achievements by showing that the problem is NP-complete for piecewise linear functions with rational coefficients that are not linear, NP-hard for almost all suitable activation functions including non-linear ones that are continuous on an interval, complete for the Existential Theory of the Reals ∃ℝ for every non-linear polynomial and ∃ℝ-hard for the exponential function and various sigmoidal functions. For the completeness results, linking the verification tasks with the theory of Constraint Satisfaction Problems turns out helpful.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro