Complexity of Gibbs samplers through Bayesian asymptotics

04/14/2023
by   Filippo Ascolani, et al.
0

Gibbs samplers are popular algorithms to approximate posterior distributions arising from Bayesian hierarchical models. Despite their popularity and good empirical performances, however, there are still relatively few quantitative theoretical results on their scalability or lack thereof, e.g. much less than for gradient-based sampling methods. We introduce a novel technique to analyse the asymptotic behaviour of mixing times of Gibbs Samplers, based on tools of Bayesian asymptotics. We apply our methodology to high dimensional hierarchical models, obtaining dimension-free convergence results for Gibbs samplers under random data-generating assumptions, for a broad class of two-level models with generic likelihood function. Specific examples with Gaussian, binomial and categorical likelihoods are discussed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset