Complex Matrix Factorization for Face Recognition

12/08/2016 ∙ by Viet-Hang Duong, et al. ∙ 0

This work developed novel complex matrix factorization methods for face recognition; the methods were complex matrix factorization (CMF), sparse complex matrix factorization (SpaCMF), and graph complex matrix factorization (GraCMF). After real-valued data are transformed into a complex field, the complex-valued matrix will be decomposed into two matrices of bases and coefficients, which are derived from solutions to an optimization problem in a complex domain. The generated objective function is the real-valued function of the reconstruction error, which produces a parametric description. Factorizing the matrix of complex entries directly transformed the constrained optimization problem into an unconstrained optimization problem. Additionally, a complex vector space with N dimensions can be regarded as a 2N-dimensional real vector space. Accordingly, all real analytic properties can be exploited in the complex field. The ability to exploit these important characteristics motivated the development herein of a simpler framework that can provide better recognition results. The effectiveness of this framework will be clearly elucidated in later sections in this paper.



There are no comments yet.


page 2

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.