Complete Bidirectional Typing for the Calculus of Inductive Constructions

02/12/2021 ∙ by Meven Lennon-Bertrand, et al. ∙ 0

This article presents a bidirectional type system for the Calculus of Inductive Constructions (CIC). It introduces a new judgement intermediate between the usual inference and checking, dubbed constrained inference, to handle the presence of computation in types. The key property of the system is its completeness with respect to the usual undirected one, which has been formally proven in Coq as a part of the MetaCoq project. Although it plays an important role in an ongoing completeness proof for a realistic typing algorithm, the interest of bidirectionality is wider, as it gives insights and structure when trying to prove properties on CIC or design variations and extensions. In particular, we put forward constrained inference, an intermediate between the usual inference and checking judgements, to handle the presence of computation in types.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 7

page 9

page 15

page 16

page 17

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.