Compiler Testing using Template Java Programs
We present JAttack, a framework that enables template-based testing for compilers. Using JAttack, a developer writes a template program that describes a set of programs to be generated and given as test inputs to a compiler. Such a framework enables developers to incorporate their domain knowledge on testing compilers, giving a basic program structure that allows for exploring complex programs that can trigger sophisticated compiler optimizations. A developer writes a template program in the host language (Java) that contains holes to be filled by JAttack. Each hole, written using a domain-specific language, constructs a node within an extended abstract syntax tree (eAST). An eAST node defines the search space for the hole, i.e., a set of expressions and values. JAttack generates programs by executing templates and filling each hole by randomly choosing expressions and values (available within the search space defined by the hole). Additionally, we introduce several optimizations to reduce JAttack's generation cost. While JAttack could be used to test various compiler features, we demonstrate its capabilities in helping test just-in-time (JIT) Java compilers, whose optimizations occur at runtime after a sufficient number of executions. Using JAttack, we have found six critical bugs that were confirmed by Oracle developers. Four of them were previously unknown, including two unknown CVEs (Common Vulnerabilities and Exposures). JAttack shows the power of combining developers' domain knowledge (via templates) with random testing to detect bugs in JIT compilers.
READ FULL TEXT