Compiler Provenance Recovery for Multi-CPU Architectures Using a Centrifuge Mechanism

11/22/2022
by   Yuhei Otsubo, et al.
0

Bit-stream recognition (BSR) has many applications, such as forensic investigations, detection of copyright infringement, and malware analysis. We propose the first BSR that takes a bare input bit-stream and outputs a class label without any preprocessing. To achieve our goal, we propose a centrifuge mechanism, where the upstream layers (sub-net) capture global features and tell the downstream layers (main-net) to switch the focus, even if a part of the input bit-stream has the same value. We applied the centrifuge mechanism to compiler provenance recovery, a type of BSR, and achieved excellent classification. Additionally, downstream transfer learning (DTL), one of the learning methods we propose for the centrifuge mechanism, pre-trains the main-net using the sub-net's ground truth instead of the sub-net's output. We found that sub-predictions made by DTL tend to be highly accurate when the sub-label classification contributes to the essence of the main prediction.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro