Comparison of VCA and GAEE algorithms for Endmember Extraction

05/27/2018 ∙ by Douglas Winston. R. S., et al. ∙ 0

Endmember Extraction is a critical step in hyperspectral image analysis and classification. It is an useful method to decompose a mixed spectrum into a collection of spectra and their corresponding proportions. In this paper, we solve a linear endmember extraction problem as an evolutionary optimization task, maximizing the Simplex Volume in the endmember space. We propose a standard genetic algorithm and a variation with In Vitro Fertilization module (IVFm) to find the best solutions and compare the results with the state-of-art Vertex Component Analysis (VCA) method and the traditional algorithms Pixel Purity Index (PPI) and N-FINDR. The experimental results on real and synthetic hyperspectral data confirms the overcome in performance and accuracy of the proposed approaches over the mentioned algorithms.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.