Comparison of threshold-based algorithms for sparse signal recovery

02/18/2018
by   Tamara Koljensic, et al.
0

Intensively growing approach in signal processing and acquisition, the Compressive Sensing approach, allows sparse signals to be recovered from small number of randomly acquired signal coefficients. This paper analyses some of the commonly used threshold-based algorithms for sparse signal reconstruction. Signals satisfy the conditions required by the Compressive Sensing theory. The Orthogonal Matching Pursuit, Iterative Hard Thresholding and Single Iteration Reconstruction algorithms are observed. Comparison in terms of reconstruction error and execution time is performed within the experimental part of the paper.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro