Comparing Facial Expression Recognition in Humans and Machines: Using CAM, GradCAM, and Extremal Perturbation

10/09/2021
by   Serin Park, et al.
0

Facial expression recognition (FER) is a topic attracting significant research in both psychology and machine learning with a wide range of applications. Despite a wealth of research on human FER and considerable progress in computational FER made possible by deep neural networks (DNNs), comparatively less work has been done on comparing the degree to which DNNs may be comparable to human performance. In this work, we compared the recognition performance and attention patterns of humans and machines during a two-alternative forced-choice FER task. Human attention was here gathered through click data that progressively uncovered a face, whereas model attention was obtained using three different popular techniques from explainable AI: CAM, GradCAM and Extremal Perturbation. In both cases, performance was gathered as percent correct. For this task, we found that humans outperformed machines quite significantly. In terms of attention patterns, we found that Extremal Perturbation had the best overall fit with the human attention map during the task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset