Comparing Deep Reinforcement Learning and Evolutionary Methods in Continuous Control

11/30/2017 ∙ by Shangtong Zhang, et al. ∙ 0

Reinforcement learning and evolutionary strategy are two major approaches in addressing complicated control problems. Both have strong biological basis and there have been recently many advanced techniques in both domains. In this paper, we present a thorough comparison between the state of the art techniques in both domains in complex continuous control tasks. We also formulate the parallelized version of the Proximal Policy Optimization method and the Deep Deterministic Policy Gradient method.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.