Comparing Broadband ISP Performance using Big Data from M-Lab

01/24/2021 ∙ by Xiaohong Deng, et al. ∙ 0

Comparing ISPs on broadband speed is challenging, since measurements can vary due to subscriber attributes such as operation system and test conditions such as access capacity, server distance, TCP window size, time-of-day, and network segment size. In this paper, we draw inspiration from observational studies in medicine, which face a similar challenge in comparing the effect of treatments on patients with diverse characteristics, and have successfully tackled this using "causal inference" techniques for post facto analysis of medical records. Our first contribution is to develop a tool to pre-process and visualize the millions of data points in M-Lab at various time- and space-granularities to get preliminary insights on factors affecting broadband performance. Next, we analyze 24 months of data pertaining to twelve ISPs across three countries, and demonstrate that there is observational bias in the data due to disparities amongst ISPs in their attribute distributions. For our third contribution, we apply a multi-variate matching method to identify suitable cohorts that can be compared without bias, which reveals that ISPs are closer in performance than thought before. Our final contribution is to refine our model by developing a method for estimating speed-tier and re-apply matching for comparison of ISP performance. Our results challenge conventional rankings of ISPs, and pave the way towards data-driven approaches for unbiased comparisons of ISPs world-wide.



There are no comments yet.


page 1

page 5

page 6

page 8

page 14

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.