Comparing Attention-based Convolutional and Recurrent Neural Networks: Success and Limitations in Machine Reading Comprehension

08/27/2018
by   Matthias Blohm, et al.
0

We propose a machine reading comprehension model based on the compare-aggregate framework with two-staged attention that achieves state-of-the-art results on the MovieQA question answering dataset. To investigate the limitations of our model as well as the behavioral difference between convolutional and recurrent neural networks, we generate adversarial examples to confuse the model and compare to human performance. Furthermore, we assess the generalizability of our model by analyzing its differences to human inference,

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset