Comparative Analysis of Box-Covering Algorithms for Fractal Networks
Research on fractal networks is a dynamically growing field of network science. A central issue is to analyze fractality with the so-called box-covering method. As this problem is known to be NP-hard, a plethora of approximating algorithms have been proposed throughout the years. This study aims to establish a unified framework for comparing approximating box-covering algorithms by collecting, implementing, and evaluating these methods in various aspects including running time and approximation ability. This work might also serve as a reference for both researchers and practitioners, allowing fast selection from a rich collection of box-covering algorithms with a publicly available codebase.
READ FULL TEXT