Compact: Approximating Complex Activation Functions for Secure Computation

09/09/2023
by   Mazharul Islam, et al.
0

Secure multi-party computation (MPC) techniques can be used to provide data privacy when users query deep neural network (DNN) models hosted on a public cloud. State-of-the-art MPC techniques can be directly leveraged for DNN models that use simple activation functions (AFs) such as ReLU. However, DNN model architectures designed for cutting-edge applications often use complex and highly non-linear AFs. Designing efficient MPC techniques for such complex AFs is an open problem. Towards this, we propose Compact, which produces piece-wise polynomial approximations of complex AFs to enable their efficient use with state-of-the-art MPC techniques. Compact neither requires nor imposes any restriction on model training and results in near-identical model accuracy. We extensively evaluate Compact on four different machine-learning tasks with DNN architectures that use popular complex AFs SiLU, GeLU, and Mish. Our experimental results show that Compact incurs negligible accuracy loss compared to DNN-specific approaches for handling complex non-linear AFs. We also incorporate Compact in two state-of-the-art MPC libraries for privacy-preserving inference and demonstrate that Compact provides 2x-5x speedup in computation compared to the state-of-the-art approximation approach for non-linear functions – while providing similar or better accuracy for DNN models with large number of hidden layers

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset