I Introduction
Detecting communities in networks provides a means of coarsegraining the complex interactions or relations (represented by network edges) between entities (represented by nodes) and offers a more interpretable summary of a complex system. However, in many complex systems the exact relationship between entities is either unknown or unobserved. Instead, we may observe interdependent signals from the nodes, such as time series, which we may use to infer these relationships. Over the past decade, a multitude of algorithms have been developed to group multivariate time series into communities with applications in finance Fenn et al. (2009, 2012); Bazzi et al. (2016); Ando and Bai (2017), neuroscience Meunier et al. (2009); Lord et al. (2012), and climate research Tantet and Dijkstra (2014). For example, identifying communities of assets whose prices vary coherently can help investors gain a deeper understanding of the foreign exchange market Fenn et al. (2009, 2012) or manage their market risk by investing in assets belonging to different communities MacMahon and Garlaschelli (2015)
. Classifying regions of the brain into distinct communities allows us to predict the onset of psychosis
Lord et al. (2012) and learn about the ageing of the brain Chan et al. (2014). Global factors affecting our climate are reflected in the community structure derived from sea surface temperatures Tantet and Dijkstra (2014).Current methods for detecting communities when network edges are unobserved, typically involve a complicated process that is highly sensitive to specific design decisions and parameter choices. Most approaches consist of three steps: First, a measure is chosen to assess the similarity of any pair of time series such as Pearson correlation Bazzi et al. (2016); Chan et al. (2014); Fenn et al. (2009, 2012); Tantet and Dijkstra (2014); Wu et al. (2015), partial correlation Lord et al. (2012); Pandit et al. (2013); Yu and Bai (2014), mutual information Donges et al. (2009), or wavelet correlation coefficients AlexanderBloch et al. (2012); Betzel et al. (2016); Meunier et al. (2009). Second, the similarity is converted to a dense weighted network Fenn et al. (2009, 2012); Bazzi et al. (2016); Betzel et al. (2016) or a binary network. For example, some authors connect the most similar time series such as to achieve a desired network density Donges et al. (2009), threshold the similarity matrix at a single value Meunier et al. (2009); Tantet and Dijkstra (2014), or demand statistical significance under a null model Lord et al. (2012); Pandit et al. (2013); Yu and Bai (2014). Others threshold the similarity matrix at multiple values to perform a sensitivity analysis AlexanderBloch et al. (2012); Chan et al. (2014); Wu et al. (2015). After the underlying network has been inferred, community detection is applied to uncover clusters of time series, for example by maximising the modularity AlexanderBloch et al. (2012); Betzel et al. (2016); Fenn et al. (2009, 2012); Meunier et al. (2009); Wu et al. (2015) or using the map equation Rosvall and Bergstrom (2008); Tantet and Dijkstra (2014); Chan et al. (2014).
This type of approach faces a number of challenges: first, most community detection methods rely on the assumption that the network edges have been accurately observed Fortunato (2010). In addition, NewmanGirvan modularity Newman and Girvan (2004), a popular measure to evaluate community structure in networks, is based on comparing the network to a null model that does not apply to networks extracted from time series data MacMahon and Garlaschelli (2015). Second, when the number of time series is large, computing pairwise similarities is computationally expensive, and the entries of the similarity matrix are highly susceptible to noise. For example, the sample covariance matrix does not have full rank when the number of observations is smaller than or equal to the number of time series Cai et al. (2011). Third, at each step of the threestage process we generally only compute point estimates and discard any notion of uncertainty such that it is difficult to distinguish genuine community structure from noise—a generic problem in network science Newman (2017)
. Fourth, missing data can make it difficult to compute similarity measures such that data have to be imputed
Wu et al. (2015) or incomplete time series are dropped MacMahon and Garlaschelli (2015); Bazzi et al. (2016). Finally, and more broadly, determining an appropriate number of communities is difficult Latouche et al. (2012) and often relies on the tuning of resolution parameters without a quality measure to choose one value over another Reichardt and Bornholdt (2006); Fenn et al. (2012).Our approach is motivated by the observation that inferring the presence of edges between all pairs of nodes in a network is an unnecessary, computationally expensive step to uncover the presence of communities. Instead, we propose a Bayesian hierarchical model for multivariate time series data that provides an endtoend community detection algorithm and propagates uncertainties directly from the raw data to the community labels. This shortcut is more than a computational trick, as it naturally allows us to address the aforementioned challenges. In particular, our approach naturally supports multiscale community detection as well as the selection of an optimal scale using model comparison. Furthermore, it enables us to extract communities even in the case of short observation time windows. The rest of this paper will be organised as follows. After introducing the algorithm, we validate and study its properties in a series of synthetic experiments. We then apply it to daily returns of constituents of the S&P100 index to identify salient communities of similar stocks and to climate data of US cities to identify homogeneous climate zones. For the latter, we characterise the quality of the communities in terms of the predictive performance provided by the model.
Ii Methods
The variability of highdimensional time series is often the result of a small number of common, underlying factors Fama and French (1993). For example, the stock price of oil and gas companies tends to be positively affected by rising oil prices, whereas the manufacturing industry, which consumes oil and gas, is likely to suffer from rising oil prices Nandha and Faff (2008). Motivated by this observation, we model the multivariate time series using a latent factor model, i.e. the dimensional observations at each time step
are generated by a linear transformation
of a lowerdimensional, latent time series and additive observation noise. More formally, the conditional distribution of is(1) 
where is the value of the time series at time , is the value of the latent time series, and
is the number of latent time series. The precision (inverse variance) of the additive noise for each time series is
, anddenotes the normal distribution with mean
and variance . The entries of the factor loading matrix encode how the observations of time series are affected by the latent factor . Using our earlier example, the entry of connecting an oil company with the (unobserved) oil price would be positive, whereas the corresponding entry for an automobile company would be negative.Variants of this model abound. For example, the mixture model of factor analysers Ghahramani and Hinton (1996); Ghahramani and Beal (2000) assumes that there is not one but many latent factors to account for a possibly nonlinear latent manifold Tipping and Bishop (1999a); Taghia et al. (2017). Huopaniemi et al. (2009); Zhao et al. (2016) demand that most of the entries of the factor loading matrix are zero such that each observation only depends on a subset of the latent factors. Inoue et al. (2007) model gene expression data and assume that the factor loadings of all genes belonging to the same community are identical.
We aim to strike a balance between the restrictive assumption that observations belonging to the same community have identical factor loadings Inoue et al. (2007) and the more complex mixtures of factor analysers Tipping and Bishop (1999a): we define a community of time series as having factor loadings drawn from a common latent distribution. Each time series belongs to exactly one community , i.e.
is the vector of community memberships and
is the number of communities. The factor loadings are drawn from a multivariate normal distribution conditional on the community membership of each time series such that(2)  
The parameters and are the dimensional mean and precision matrix of the component, respectively. The intuition behind the model is captured in panel (a) of fig. 1
: we can identify communities because time series that behave similarly are close in the space spanned by the factor loading matrix. This idea relates to latent space models of networks in which nodes that are positioned closer together in the latent space have a higher probability of being linked
Hoff et al. (2002). Extending the notion of communities to such a model implies clusters of nodes within the latent space Handcock et al. (2007).The priors for the mean and precision parameters of the different communities require careful consideration because they can have a significant impact on the outcome of the inference Kass and Raftery (1995): if the priors are too broad, the model evidence is penalised heavily for each additional community, and all time series are assigned to a single community. If the priors are too narrow, the inference will fail because it is dominated by our prior beliefs rather than being data driven. To minimise the sensitivity of our model to prior choices, we use an automatic relevance determination (ARD) prior, which can learn an appropriate scale for the centres of the communities Drugowitsch (2013). In particular,
Conjugate ARD priors are not available for the precision matrices of the communities, and we use Wishart priors such that
where and are the shape and scale parameters of the Wishart distribution, respectively, and is the
dimensional identity matrix. To obtain a relatively broad prior
Alvarez et al. (2014), we let such that the prior precision, i.e. the expectation of the precision under the prior, is . We will perform inference for a range of prior precisions because we cannot learn it automatically using an ARD prior.Latent factor models as defined in eq. 1 are not uniquely identifiable because we can obtain an equivalent solution by, for example, multiplying the factor loading matrix by an arbitrary constant and dividing the latent factors by the same value. We impose a zeromean, unitvariance Gaussian prior on the latent factors to identify the scale of and Luttinen (2013). This approach does not identify the model with respect to rotations and reflections. But the lack of identifiability does not affect the detection of communities because the Gaussian mixture model defined in eq. 2 is invariant to orthogonal transformations.
The community memberships follow a categorical distribution
where represents the normalised sizes of communities such that . The community sizes have a Dirichlet prior
where is a uniform concentration parameter for all elements of the Dirichlet distribution such that no community is favoured apriori. We use a broad Gamma prior for the precision parameter of the idiosyncratic noise. In particular,
Panel (b) of fig. 1 shows a graphical representation of the model as a directed acyclic graph.
ii.1 Inference using the variational meanfield approximation
Exact inference for the hierarchical model is intractable, and we use a variational meanfield approximation of the posterior distribution to learn the parameters Bishop (2007). The basic premise of variational inference is to approximate the posterior distribution by a simpler distribution , where is the set of all parameters of the model. Variational inference algorithms seek the approximation
that minimises the KullbackLeibler divergence between the approximation and the true posterior. More formally,
where is the space of all approximations we are willing to consider. Minimising the KullbackLeibler divergence is equivalent to maximising the evidence lower bound (ELBO)
(3) 
where denotes the expectation with respect to the approximate posterior and the righthand side of eq. 3 is the logarithm of the model evidence Bishop (2007). The maximised ELBO (henceforth just ELBO) serves as a proxy for the model evidence to perform model comparison, and we will use it to determine the number of latent factors and the prior precision.
We further assume that the posterior approximation factorises with respect to the nodes of the graphical model shown in fig. 1 (a). More formally, we let which restricts the function space . Under this assumption, known as the meanfield approximation, the individual factors can be optimised in turn until the ELBO converges to a (local) maximum. The general update equation is (up to an additive normalisation constant)
where denotes the expectation with respect to all parameters except the parameter under consideration. See Blei et al. (2017)
for a recent review of variational Bayesian inference and
appendix B for the update equations specific to our model.Iii Simulation study
Having developed an inference algorithm for the model, we would like to assess under which conditions the algorithm fails and succeeds. We start with a simple, illustrative example by drawing community means from a twodimensional normal distribution with zero mean and unit variance, i.e. we consider two latent time series and a twodimensional space of factor loadings. The community precisions are drawn from a Wishart distribution with shape parameter and identity scale parameter. The communities are wellseparated because the withincommunity variability () is much smaller than the betweencommunity variability () as shown in panel (a) of fig. 2. We assign
time series to the five communities using a uniform distribution of community sizes
. Finally, we draw samples of the twodimensional latent factors and obtain the observations using eq. 1, i.e. by adding Gaussian observation noise with precision drawn from a distribution to the linear transformation .Optimising the ELBO is usually a nonconvex problem Blei et al. (2017), and the results are sensitive to the initalisation of the posterior factors. Choosing a good initialisation is difficult in general, but the optimisation can be aided to converge more quickly by initialising it using a simpler algorithm SalterTownshend and Murphy (2013). We run the inference algorithm in three stages: first, we fit a standard probablistic PCA Tipping and Bishop (1999b) to initialise the latent factors, factor loadings, and noise precision. Second, we perform ten independent runs of means clustering on the factor loading matrix Arthur and Vassilvitskii (2007) and update the community assignments according to the result of the best run of the clustering algorithm, i.e. the clustering with the smallest sum of squared distances between the factor loadings and the corresponding cluster centres . Third, we optimise the posterior factors of all parameters according to the variational update equations in appendix B until the ELBO does not increase by more than a factor of in successive steps. The entire process is repeated 50 times and we choose the model with the highest ELBO to mitigate the optimisation algorithm getting stuck in local optima.
The number of communities and the prior precision are tightly coupled: suppose we choose a large prior precision for the Wishart distribution encoding a prior belief that each individual community occupies a small volume in the space of factor loadings. Consequently, the algorithm is incentivised to separate the time series into many small communities. In the limit (where vanishing withincommunity variation is permitted), the algorithm assigns each time series to its own community. In contrast, if we choose a small prior precision, our initial belief is that each community occupies a large volume in the latent space, and time series are aggregated into few, large communities. Fortunately, the number of communities is determined automatically once the prior precision has been specified: in practice, we define the inferred cluster labels as
and determine the number of inferred communities by counting the number of unique elements in .
For the synthetic data discussed above, we set the maximum number of communities to ten and run the inference for a varying number of latent factors and prior precisions. Increasing the maximum number of communities would not have any effect because the algorithm identifies at most eight communities. The ELBO of the best model for each parameter pair is shown in panel (c) of fig. 2. The model with the highest ELBO correctly identifies the number of factors and the number of communities; the inferred parameters are shown in panel (b). As mentioned in section II, the model is not identifiable with respect to rotations and reflections and consequently the factor loadings in panels (a) and (b) differ. However, the precise values do not affect the community assignments, and the difference is immaterial. Panel (d) shows the difference between the inferred and actual number of communities. As expected, choosing too small or large a prior precision leads to the algorithm inferring too few or many communities, respectively.
Choosing the hyperparameters, such as the number of factors and the prior precision, to maximise the ELBO is known as empirical Bayes Bishop (2007)
. In theory, it is preferable to introduce hyperpriors and treat the number of factors and the prior precision as proper model parameters similar to the ARD prior. However, dealing with the variable dimensionality of the latent space is difficult in practice and computationally convenient conjugate priors for the scale parameter of Wishart distributions do not exist.
iii.1 Multiscale community detection
Treating the dimensionality of the latent space and the extent of communities in the latent space as input parameters not only lets us avoid complicated inference but also provides us with a natural approach to multiscale community detection. We create nine communities arranged in a hierarchical fashion in the factor loading space similar to a truncated Sierpiński triangle and assign time series to the communities as shown in panel (b) of fig. 3. As in the previous section, we generate observations of the time series with noise precision drawn from a distribution.
In this example, we assume that the number of latent factors is known, set the maximum number of communities to 20, and vary the prior precision over several orders of magnitude. Panel (a) of fig. 3 shows the ELBO as a function of the prior precision exhibiting two local maxima: the larger of the two corresponds to a large prior precision and identifies the nine communities used to generate the data as shown in panel (b). The smaller maximum occurs at a smaller prior precision and the algorithm aggregates time series into mesoscopic communities as shown in panel (d). Decreasing the prior precision further forces the algorithm to assign all time series to a single community, and increasing the prior precision beyond its optimal value results in communities being fragmented into smaller components as can be seen in panel (c). Our algorithm is able to select an appropriate scale automatically but also allows the user to select a particular scale of interest if desired.
iii.2 Testing the limits
In both of the examples we have considered so far, the communities were well separated from one another which made it easier to assign time series to communities. Similarly, the number of observations was twice as large as the number of time series such that the algorithm could constrain the factor loading matrix well. In this section, we consider how the performance of the algorithm changes as we change the separation between communities and the number of observations. We define the community separation
which measures the relative betweencommunity and withincommunity scales such that communities are wellseparated in the factor loading space if , and are overlapping if . The expectation and variance in the definition of are taken with respect to the generative model for the synthetic data.
For each combination of the number of observations and the separation , we run 50 independent simulations with communities, prior precision for each community, and latent factors. For the inference, we assume that the number of latent factors is known and impose a limit of at most 10 communities. The prior precision is varied logarithmically from to , and we retain the model with the highest ELBO. We use two criteria to measure the performance of the algorithm.
First, we measure the normalised mutual information (NMI) between the inferred community labels and the true community labels . The NMI is equal to one if the inferred and true community labels match exactly and is equal to zero if the community labels are independent. It is defined as Strehl and Ghosh (2002)
where is the mutual information between the true and inferred community assignments, and is the entropy of . The NMI displayed in panel (a) of fig. 4 shows a clear and expected pattern: the larger the separation and the larger the number of observations, the better the inference. The separation poses a fundamental limit to how well we can infer the community labels. Even if we could estimate the factor loadings perfectly, we could not determine the community memberships if the communities are overlapping. This observation is analogous to the detectability limit for community detection on fullyobserved networks: the ability to recover community assignments diminishes as the difference of withincommunity and betweencommunity connections decreases Decelle et al. (2011). However, provided that the communities are well separated, we can estimate the community labels well with a relatively small number of observations. We only require that the estimation error of the factor loadings are small compared to the separation between communities. Of course, the community separation is not under our control in practice, so we should ensure that we collect enough data to estimate the factor loadings well.
Second, we compare the inferred number of communities with the true number of planted communities as shown in panel (b) of fig. 4. When the communities are overlapping, the algorithm infers a smaller number of communities because aggregating time series into fewer communities with more constituents provides a more parsimonious explanation of the data. Similarly, when the number of observations is too small, the factor loadings are not estimated well, and the algorithm chooses fewer communities because the data do not provide sufficient evidence to split the set of time series into smaller communities.
Iv Application to financial time series
Having studied the behaviour of the algorithm on synthetic data, we apply it to daily returns of constituents of the S&P100 index comprising 102 stocks of 100 large companies in the United States. Google and 21 Century Fox have two classes of shares and we discard FOXA and GOOG in favour of FOX and GOOGL, respectively, because the latter have voting rights. We obtained 252 daily closing prices for all stocks from 4 of January to 30 of December 2016 from Yahoo! finance^{1}^{1}1https://finance.yahoo.com/. Before feeding the data to our algorithm, we compute the daily logarithmic returns for each time series and standardise them by subtracting the mean and dividing by the standard deviation.
In contrast to performing a grid search over the number of latent factors and the prior precision jointly as in section III, we run the inference in two steps. First, we fit a standard probabilistic PCA model Tipping and Bishop (1999b) and use the ELBO to choose the number of latent factors as shown in panel (a) of fig. 5. Having identified the optimal number of factors as , we perform a grid search over the prior precision to select an appropriate scale for the communities. The algorithm selects communities as shown in panels (b) and (c) of fig. 5. Amongst an ensemble of 50 independently fitted models for each prior precision, the model with the highest ELBO tends to have the smallest number of communities: the algorithm tries to find a parsimonious description of the data and representations with too many communities are penalised.
The factor loading matrix has nontrivial structure as can be seen in panel (a) of fig. 6: the columns of the factor loading matrix are ordered descendingly according to the columnwise norm. The first column explains most of the variance of the data and the corresponding factor is often referred to as the market mode which captures the overall sentiment of investors Fenn et al. (2011); MacMahon and Garlaschelli (2015). Additional factors capture ever more refined structure. Because visualising the tendimensional factor loading matrix is difficult, we obtain a lowerdimensional embedding using tSNE van der Maaten and Hinton (2008) shown in panel (b). The shaded regions are the convex hulls of time series belonging to the same community.
The community assignments capture salient structure in the data. For example, the three smallest communities that have only two members consist of: MasterCard (MA) and Visa (V), both credit card companies; Lockheed Martin (LMT) and Raytheon (RTN), both defence companies; and DuPont (DD) and Dow Chemical (DOW), both chemical companies. Dow Chemical and DuPont merged to form the conglomerate DowDuPont (DWDP) in August 2017. The algorithm also identifies a large community of companies from diverse industry sectors. More specialised communities consist of biotechnology and pharmaceutical companies (e.g. Merck (MRK), Gilead Sciences (GILD)), financial services companies (e.g. Citigroup (C), Goldman Sachs (GS)), as well as manufacturing and shipping (e.g. Boeing (BA), Caterpillar (CAT), FedEx (FDX), United Parcel Service (UPS)).
Group  Constituents 

Mixed  Apple (AAPL), Abbott Laboratories (ABT), Accenture (ACN), Amazon (AMZN), American Express (AXP), Cisco (CSCO), Danaher (DHR), Walt Disney (DIS), Facebook (FB), TwentyFirst Century Fox (FOX), Google (GOOGL), Home Depot (HD), Intel (INTC), Lowe’s (LOW), Medtronic (MDT), Monsanto (MON), Microsoft (MSFT), Nike (NKE), Oracle (ORCL), Priceline.com (PCLN), Paypal (PYPL), Qualcomm (QCOM), Starbucks (SBUX), Time Warner (TWX), Texas Instruments (TXN), Walgreen (WBA) 
Biotech  AbbVie (ABBV), Actavis (AGN), Amgen (AMGN), Biogen (BIIB), BristolMyers Squibb (BMY), Celgene (CELG), Costco (COST), CVS (CVS), Gilead (GILD), Johnson & Johnson (JNJ), Eli Lilly (LLY), McDonald’s (MCD), Merck (MRK), Pfizer (PFE), Target (TGT), UnitedHealth (UNH), Walmart (WMT) 
Financials  American International Group (AIG), Bank of America (BAC), BNY Mellon (BK), BlackRock (BLK), Citigroup (C), Capital One (COF), Goldman Sachs (GS), JPMorgan Chase (JPM), MetLife (MET), Morgan Stanley (MS), US Bancorp (USB), Wells Fargo (WFC) 
Manufacturing & shipping  Allstate (ALL), Barnes Group (B), Boeing (BA), Caterpillar (CAT), Comcast (CMCSA), Emerson Electric (EMR), Ford (F), FedEx (FDX), General Dynamics (GD), General Electric (GE), General Motors (GM), Honeywell (HON), International Business Machines (IBM), 3M (MMM), Union Pacific (UNP), United Parcel Service (UPS), United Gechnologies (UTX) 
Fastmoving consumer goods  ColgatePalmolive (CL), Kraft Heinz (KHC), Coca Cola (KO), Mondelez International (MDLZ), Altria (MO), PepsiCo (PEP), Procter & Gamble (PG), Philip Morris International (PM) 
Oil & gas  ConocoPhillips (COP), Chevron (CVX), Halliburton (HAL), Kinder Morgan (KMI), Occidental Petroleum (OXY), Schlumberger (SLB), ExxonMobil (XOM) 
Chemicals  DuPont (DD), Dow Chemical (DOW) 
Utilities  Duke Energy (DUK), Nextera (NEE), Southern Company (SO) 
Telecomms  Exelon (EXC), Simon Property Group (SPG), AT&T (T), Verizon (VZ) 
Defence  Lockheed Martin (LMT), Raytheon (RTN) 
Credit cards  MasterCard (MA), Visa (V) 
Some of the community assignments appear to be less intuitive. For instance, the nuclear energy company Exelon (EXC) is assigned to a community of telecommunications companies rather than to a community of other energy companies as we might expect. This result does not necessarily indicate an error in community assignment, as the “true” communities in real data are not known Peel et al. (2017)
. However, in this case we see in the tSNE embedding that Exelon is closer to other energy companies, which suggests that this particular assignment may be an artefact of assuming Gaussian distributed factor loadings. See
table 1 for a full list of companies and community assignments.V Application to climate data
We now apply our method to climate data from 1,429 US cities^{2}^{2}2Data downloaded from https://www.usclimatedata.com.. Each “node” represents a city, and the signals we observe at each of the nodes are monthly values (averaged over 20 years) for the high and low temperatures and the amount of precipitation received. So instead of observations of a time series, we have attributes of the nodes, in this case (three times twelve months). In this context, communities represent climate zones in which the temperature and precipitation vary similarly. In climatology, locales are classified into climate zones according to manmade climate classification schemes. One of the most popular climate classification schemes is the KöppenGeiger climate classification system Kottek et al. (2006), first developed in 1884 by Wladimir Köppen Köppen (1884), but has since received a number of modifications. The system divides climates into groups based on seasonal temperature and precipitation patterns. Figure 7 (a) shows the KöppenGeiger classification of the US cities we studied.
We infer the parameters of our model and community assignments using a similar approach to the previous section except for two notable differences. First, we found that the ELBO increased monotonically with increasing number of latent factors when fitting the standard probabilistic PCA. We thus decided to use six latent factors as the rate of increase of the ELBO drops when we increase the number of factors further. Second, instead of choosing the number of communities by maximising the ELBO, we set the number of communities to the number of KöppenGeiger climate zones to allow for a more direct comparison. Figure 7 (b) shows the communities inferred by our model. Both sets of climate zones display similar qualitative features such as the division between the humid East and the arid West along the 100 meridian. However, a direct quantitative comparison of the two climate partitions is not necessarily meaningful as we do not expect there to be only a single good way to partition the nodes. For reference, we find the normalised mutual information between the two community assignments is . The low correlation between our inferred communities and the manually labelled KöppenGeiger zones does not imply poor performance of our model Peel et al. (2017), but nor does it validate it.
Instead of trying to recover manmade labels, we consider the predictive performance of our model on heldout, previously unseen data. We first fit the model to the complete series of 760 cities selected uniformly at random, which acts as a training set to learn the latent factors , community means , and community precisions . Second, we perform a tenfold cross validation on the remaining 669 cities by holding out a tenth of the data, inferring their factor loadings and their community assignment, and predicting the missing signal values as .
For comparison, we impute the missing values using the mean value of each signal type, i.e. the mean temperature or precipitation for each month, within each KöppenGeiger climate zone Kottek et al. (2006). Similarly, we make predictions using the communities found by a typical networkbased method for clustering time series Fenn et al. (2012). In particular, we apply the Louvain algorithm Blondel et al. (2008) with resolution parameter (so that we get approximately the same number of communities as KöppenGeiger zones) to the weighted adjacency matrix
where is the Pearson correlation between series and , and the Kronecker delta removes self edges Fenn et al. (2012). To provide a more direct comparison with the communities found by our method, we also compare the predictions using the community means, i.e. .
Table 2 shows the root mean squared error (RMSE) for each approach. Our method outperforms the other two in terms of predictive ability. Whilst this observation provides some validation of our approach, it should not come as a surprise that our datadriven method, which is trained on the same type of data we are trying to predict, outperforms the handcrafted zones of Köppen and Geiger. However, the approach detecting communities using a weighted adjacency matrix Fenn et al. (2012) performs worse than the KöppenGeiger climate zones despite being trained on the same data: the method may identify spurious communities—at least with respect to those that have good predictive performance.
Vi Discussion
We have developed a model for community detection for networks in which the edges are not observed directly. Using a series of interdependent signals observed for each of the nodes, our model detects communities using a combination of a latent factor model, which provides a lowerdimensional latentspace embedding, and a Gaussian mixture model, which captures the community structure. We fit the model using a Bayesian variational meanfield approximation which allows us to determine the number of latent factors as well as an appropriate number of communities using the ELBO for model comparison. The method is able to recover meaningful communities from daily returns of constituents of the S&P100 index and climate data in US cities. The code to run the inference is publicly available^{3}^{3}3https://github.com/tillahoffmann/time_series/.
Our proposed method presents an important advancement over current methods for detecting communities when network edges are unobserved. Recall that these methods typically consist of three steps: calculate pairwise similarity, threshold similarity to create a network, and apply community detection to the network. In contrast, our approach is endtoend, i.e. the method propagates uncertainties from the raw data to the community labels instead of relying on a sequence of point estimates. As a result, the model is able to recover community structure even when the number of observations is possibly much smaller than the number of . Current methods for detecting communities when network edges are unobserved struggle in this setting because of the uncertainty in the estimate of the similarity matrix. The asymptotic complexity of algorithms that rely on pairwise similarities scales (at least) quadratically with the number of nodes whereas each iteration of our algorithm scales linearly.
There are several avenues for future work. For example, using the same prior precision for all communities reflects our prior belief that all communities should occupy roughly similar volumes in the factor loading space. In analogy, in the case of standard community detection with modularity optimisation, balanced sizes between communities are induced by the socalled diversity index in the quality function Delvenne et al. (2010). Whether this assumption holds in practice is unclear, and we may be able to discover communities of heterogeneous sizes in the factor loading space by lifting this assumption. Furthermore, Gaussian distributions are a standard choice for mixture models, but mixtures of other distributions such as studentt distributions may provide better clustering results.
Despite being motivated by time series, our algorithm does not model the dynamics of the data explicitly. Using a dynamical model such as a linear state space model may capture additional information in the data to help infer better community labels and allow us to predict future values of the time series.
As shown in section V
, our algorithm can recover communities from observations of different attributes. Whilst this use of the model violates the assumption that node observations are identically distributed, it does not prevent us from identifying meaningful communities. However, it may perform poorly in a posterior predictive check that compares statistics of the posterior distribution
with the observed data. Promoting the observations and factor loadingsto threedimensional tensors would allow us to model different attributes in a principled fashion. In particular, the
attribute of node at time would have distributionwhere controls the effect of the latent factor on attribute of node . Whilst increasing the number of independent observations can only help us constrain the factor loadings , collecting data about additional attributes provides fundamentally new information. Provided that the community assignments for the Gaussian mixture model are shared across the factor loadings of different attributes, we would be able to assign nodes to the correct community even if the components are not resolvable independently, i.e. , as discussed in section III.2—similar to the enhanced detectability of fixed communities in temporal Ghasemian et al. (2016) and multilayer Taylor et al. (2016) networks.
Finally, this work provides a new perspective on how to perform networkbased measurements in empirical systems where edges are not observed. This opens the way to other endtoend methods for, e.g. estimating centrality measures or motifs in complex dynamical systems.
References
 Fenn et al. (2009) Daniel J. Fenn, Mason A. Porter, Mark McDonald, Stacy Williams, Neil F. Johnson, and Nick S. Jones, “Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007–2008 credit crisis,” Chaos 19, 033119 (2009).
 Fenn et al. (2012) Daniel J. Fenn, Mason A. Porter, Peter J. Mucha, Mark McDonald, Stacy Williams, Neil F. Johnson, and Nick S. Jones, “Dynamical clustering of exchange rates,” Quantitative Finance 12, 1493–1520 (2012).
 Bazzi et al. (2016) Marya Bazzi, Mason A. Porter, Stacy Williams, Mark McDonald, Daniel J. Fenn, and Sam D. Howison, “Community detection in temporal multilayer networks, with an application to correlation networks,” Multiscale Modeling & Simulation 14, 1–41 (2016).
 Ando and Bai (2017) Tomohiro Ando and Jushan Bai, “Clustering huge number of financial time series: A panel data approach with highdimensional predictors and factor structures,” Journal of the American Statistical Association 0, 1–17 (2017).
 Meunier et al. (2009) David Meunier, Renaud Lambiotte, Alex Fornito, Karen D Ersche, and Edward T Bullmore, “Hierarchical modularity in human brain functional networks,” Frontiers in Neuroinformatics 3, 37 (2009).
 Lord et al. (2012) LouisDavid Lord, Paul Allen, Paul Expert, Oliver Howes, Matthew Broome, Renaud Lambiotte, Paolo FusarPoli, Isabel Valli, Philip McGuire, and Federico E. Turkheimer, “Functional brain networks before the onset of psychosis: A prospective fmri study with graph theoretical analysis,” NeuroImage: Clinical 1, 91–98 (2012).
 Tantet and Dijkstra (2014) A. Tantet and H. A. Dijkstra, “An interaction network perspective on the relation between patterns of sea surface temperature variability and global mean surface temperature,” Earth System Dynamics 5, 1–14 (2014).
 MacMahon and Garlaschelli (2015) Mel MacMahon and Diego Garlaschelli, “Community detection for correlation matrices,” Phys. Rev. X 5, 021006 (2015).
 Chan et al. (2014) Micaela Y. Chan, Denise C. Park, Neil K. Savalia, Steven E. Petersen, and Gagan S. Wig, “Decreased segregation of brain systems across the healthy adult lifespan,” Proceedings of the National Academy of Sciences 111, 4997–5006 (2014).
 Wu et al. (2015) Sen Wu, Mengjiao Tuo, and Deying Xiong, “Community structure detection of shanghai stock market based on complex networks,” in 4th International Conference on Logistics, Informatics and Service Science (2015) pp. 1661–1666.
 Pandit et al. (2013) Anand S Pandit, Paul Expert, Renaud Lambiotte, Valerie Bonnelle, Robert Leech, Federico E Turkheimer, and David J Sharp, “Traumatic brain injury impairs smallworld topology,” Neurology 80, 1826–1833 (2013).
 Yu and Bai (2014) Tianwei Yu and Yun Bai, “Networkbased modular latent structure analysis,” BMC Bioinformatics 15, S6 (2014).
 Donges et al. (2009) J. F. Donges, Y. Zou, N. Marwan, and J. Kurths, “The backbone of the climate network,” Europhysics Letters 87, 48007 (2009).
 AlexanderBloch et al. (2012) Aaron AlexanderBloch, Renaud Lambiotte, Ben Roberts, Jay Giedd, Nitin Gogtay, and Ed Bullmore, “The discovery of population differences in network community structure: New methods and applications to brain functional networks in schizophrenia,” NeuroImage 59, 3889–3900 (2012).
 Betzel et al. (2016) R. F. Betzel, T. D. Satterthwaite, J. I. Gold, and D. S. Bassett, “A positive mood, a flexible brain,” arXiv , 1601.07881 (2016).
 Rosvall and Bergstrom (2008) Martin Rosvall and Carl T Bergstrom, “Maps of random walks on complex networks reveal community structure,” Proceedings of the National Academy of Sciences 105, 1118–1123 (2008).
 Fortunato (2010) Santo Fortunato, “Community detection in graphs,” Physics Reports 486, 75–174 (2010).
 Newman and Girvan (2004) M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,” Phys. Rev. E 69, 026113 (2004).
 Cai et al. (2011) Tony Cai, Weidong Liu, and Xi Luo, “A constrained minimization approach to sparse precision matrix estimation,” Journal of the American Statistical Association 106, 594–607 (2011).
 Newman (2017) M. E. J. Newman, “Measurement errors in network data,” arXiv , 1703.07376 (2017).
 Latouche et al. (2012) P Latouche, E Birmelé, and C Ambroise, “Variational bayesian inference and complexity control for stochastic block models,” Statistical Modelling 12, 93–115 (2012).
 Reichardt and Bornholdt (2006) Jörg Reichardt and Stefan Bornholdt, “Statistical mechanics of community detection,” Phys. Rev. E 74, 016110 (2006).
 Fama and French (1993) Eugene F. Fama and Kenneth R. French, “Common risk factors in the returns on stocks and bonds,” Journal of Financial Economics 33, 3–56 (1993).
 Nandha and Faff (2008) Mohan Nandha and Robert Faff, “Does oil move equity prices? a global view,” Energy Economics 30, 986–997 (2008).
 Ghahramani and Hinton (1996) Zoubin Ghahramani and Geoffrey E. Hinton, The EM Algorithm for Mixtures of Factor Analyzers, Tech. Rep. CRGTR961 (University of Toronto, 1996).
 Ghahramani and Beal (2000) Zoubin Ghahramani and Matthew J. Beal, “Variational inference for bayesian mixtures of factor analysers,” in Advances in Neural Information Processing Systems, Vol. 12 (2000) pp. 449–455.
 Tipping and Bishop (1999a) Michael E. Tipping and Christopher M. Bishop, “Mixtures of probabilistic principal component analyzers,” Neural Computation 11, 443–482 (1999a).
 Taghia et al. (2017) Jalil Taghia, Srikanth Ryali, Tianwen Chen, Kaustubh Supekar, Weidong Cai, and Vinod Menon, “Bayesian switching factor analysis for estimating timevarying functional connectivity in fmri,” NeuroImage 155, 271–290 (2017).
 Huopaniemi et al. (2009) Ilkka Huopaniemi, Tommi Suvitaival, Janne Nikkilä, Matej Orešič, and Samuel Kaski, “Twoway analysis of highdimensional collinear data,” Data Mining and Knowledge Discovery 19, 261–276 (2009).

Zhao et al. (2016)
Shiwen Zhao, Chuan Gao, Sayan Mukherjee, and Barbara E Engelhardt, “Bayesian group factor analysis with structured sparsity,” Journal of Machine Learning Research
17, 1–47 (2016).  Inoue et al. (2007) Lurdes Y. T. Inoue, Mauricio Neira, Colleen Nelson, Martin Gleave, and Ruth Etzioni, “Clusterbased network model for timecourse gene expression data,” Biostatistics 8, 507–525 (2007).
 Hoff et al. (2002) Peter D Hoff, Adrian E Raftery, and Mark S Handcock, “Latent space approaches to social network analysis,” Journal of the american Statistical association 97, 1090–1098 (2002).
 Handcock et al. (2007) Mark S. Handcock, Adrian E. Raftery, and Jeremy M. Tantrum, “Modelbased clustering for social networks,” Journal of the Royal Statistical Society A 170, 301–354 (2007).

Kass and Raftery (1995)
Robert E. Kass and Adrian E. Raftery, “Bayes factors,”
Journal of the American Statistical Association 90, 773–795 (1995).  Drugowitsch (2013) Jan Drugowitsch, “Variational bayesian inference for linear and logistic regression,” arXiv , 1310.5438 (2013).
 Alvarez et al. (2014) Ignacio Alvarez, Jarad Niemi, and Matt Simpson, “Bayesian infernece for a covariance matrix,” in Annual conference on applied statistics in agriculture (2014).
 Luttinen (2013) Jaakko Luttinen, “Fast variational bayesian linear statespace model,” in European Conference on Machine Learning and Knowledge Discovery in Databases, Vol. 8188 (2013) pp. 305–320.
 Bishop (2007) Christopher M. Bishop, Pattern Recognition and Machine Learning (Springer, 2007).
 Blei et al. (2017) David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe, “Variational inference: A review for statisticians,” Journal of the American Statistical Association 112, 859–877 (2017).
 SalterTownshend and Murphy (2013) Michael SalterTownshend and Thomas Brendan Murphy, “Variational bayesian inference for the latent position cluster model for network data,” Computational Statistics & Data Analysis 57, 661–671 (2013).
 Tipping and Bishop (1999b) Michael E. Tipping and Christopher M. Bishop, “Probabilistic principal component analysis,” Journal of the Royal Statistical Society B 61, 611–622 (1999b).

Arthur and Vassilvitskii (2007)
David Arthur and Sergei Vassilvitskii, “Kmeans++: The advantages of careful seeding,” in
Proceedings of the Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms (2007) pp. 1027–1035.  Strehl and Ghosh (2002) Alexander Strehl and Joydeep Ghosh, “Cluster ensembles: a knowledge reuse framework for combining multiple partitiions,” Journal of Machine Learning Research 3, 583–617 (2002).

Decelle et al. (2011)
Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová, “Inference and phase transitions in the detection of modules in sparse networks,” Physical Review Letters
107, 065701 (2011).  Fenn et al. (2011) Daniel J. Fenn, Mason A. Porter, Stacy Williams, Mark McDonald, Neil F. Johnson, and Nick S. Jones, “Temporal evolution of financialmarket correlations,” Phys. Rev. E 84, 026109 (2011).
 van der Maaten and Hinton (2008) Laurens van der Maaten and Geoffrey Hinton, “Visualizing data using tSNE,” Journal of Machine Learning Research 9, 2579–2605 (2008).
 Peel et al. (2017) Leto Peel, Daniel B Larremore, and Aaron Clauset, “The ground truth about metadata and community detection in networks,” Science Advances 3, e1602548 (2017).
 Kottek et al. (2006) Markus Kottek, Jürgen Grieser, Christoph Beck, Bruno Rudolf, and Franz Rubel, “World map of the köppengeiger climate classification updated,” Meteorologische Zeitschrift 15, 259–263 (2006).
 Köppen (1884) Wladimir Köppen, “Die wärmezonen der erde, nach der dauer der heissen, gemässigten und kalten zeit und nach der wirkung der wärme auf die organische welt betrachtet,” Meteorologische Zeitschrift 1, 5–226 (1884).
 Blondel et al. (2008) Vincent D Blondel, JeanLoup Guillaume, Renaud Lambiotte, and Etienne Lefebvre, “Fast unfolding of communities in large networks,” Journal of statistical mechanics: theory and experiment 2008, P10008 (2008).
 Delvenne et al. (2010) J.C. Delvenne, S. N. Yaliraki, and M. Barahona, “Stability of graph communities across time scales,” Proceedings of the National Academy of Sciences 107, 12755–12760 (2010), http://www.pnas.org/content/107/29/12755.full.pdf .
 Ghasemian et al. (2016) Amir Ghasemian, Pan Zhang, Aaron Clauset, Cristopher Moore, and Leto Peel, “Detectability thresholds and optimal algorithms for community structure in dynamic networks,” Physical Review X 6, 031005 (2016).
 Taylor et al. (2016) Dane Taylor, Saray Shai, Natalie Stanley, and Peter J Mucha, “Enhanced detectability of community structure in multilayer networks through layer aggregation,” Physical review letters 116, 228301 (2016).
Appendix A Exponential family distributions
For completeness and the convenience of readers with a nonBayesian background, we provide definitions of some distributions.
a.1 Normal distribution
The univariate normal distribution with mean and precision is denoted by
and has probability distribution
The multivariate normal distribution with mean vector and positivedefinite precision matrix is denoted by and has probability distribution
a.2 Gamma and Wishart distributions
The Gamma distribution with shape parameter
and scale parameter is denoted by and has probability distributionwhere is the Gamma function. The mean and variance of the Gamma distribution are
(4)  
(5) 
The Wishart distribution is a multivariate generalisation of the Gamma distribution parametrised by the shape parameter and positivedefinite scale parameter . It has probability distribution
where is the multivariate Gamma function and denotes the trace of . The parametrisation of the Wishart distribution is chosen to match the parametrisation of the Gamma distribution. Other texts may use instead. The mean and variance of the Wishart distribution are
(6)  
(7) 
where .
a.3 Dirichlet distribution
The Dirichlet distribution with concentration parameter is denoted by and has probability distribution
where . The mean and variance of the Dirichlet distribution are
(8)  
(9) 
Appendix B Update rules for variational inference
In this section, we derive the update rules for the posterior factors using the variational meanfield approximation. We start with the logarithm of the joint distribution of the time series observations and the model parameters
(10)  
(11)  
(12) 
The factors approximating the posterior for each model parameter are equal to the expectation of the logjoint distribution with respect to all other parameters Bishop (2007). Thus, we only need to consider terms that explicitly depend on the parameter of interest because all other terms can be absorbed into the normalisation constant of the factor.
Starting with the latent factors, we find
where we have used the Einstein summation convention such that repeated indices that do not appear on both sides of the equation are summed over. The precision of the additive noise has posterior factor
The posterior factor for the factor loadings is
The posterior factor for the centres of the groups is
The posterior factor for the precisions of the groups is
(13)  
(14) 
The posterior factor for the group assignments is
The posterior factor for the group sizes is
The posterior factor for the precision of the group centres is
Comments
There are no comments yet.