communication of information in systems of heterogenious agents and systems' dynamics

04/27/2023
by   Inga Ivanova, et al.
0

Communication of information in complex systems can be considered as major driver of systems evolution. What matters is not the communicated information by itself but rather the meaning that is supplied to the information. However informational exchange in a system of heterogenious agents, which code and decode information with different meaning processing structures, is more complex than simple input-output model. The structural difference of coding and decoding algorithms in a system of three or more groups of agents, entertaining different sets of communication codes,provide a source of additional options which has an impact on system's dynamics. The mechanisms of meaning and information processing can be evaluated analytically ion a model framework. The results show that model predictions acccurately fit empirically observed data in systems of different origions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro