Combining Graph-based Dependency Features with Convolutional Neural Network for Answer Triggering

08/05/2018 ∙ by Deepak Gupta, et al. ∙ 0

Answer triggering is the task of selecting the best-suited answer for a given question from a set of candidate answers if exists. In this paper, we present a hybrid deep learning model for answer triggering, which combines several dependency graph based alignment features, namely graph edit distance, graph-based similarity and dependency graph coverage, with dense vector embeddings from a Convolutional Neural Network (CNN). Our experiments on the WikiQA dataset show that such a combination can more accurately trigger a candidate answer compared to the previous state-of-the-art models. Comparative study on WikiQA dataset shows 5.86 question level.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.