Combining Generative and Discriminative Models for Hybrid Inference

06/06/2019
by   Victor Garcia Satorras, et al.
8

A graphical model is a structured representation of the data generating process. The traditional method to reason over random variables is to perform inference in this graphical model. However, in many cases the generating process is only a poor approximation of the much more complex true data generating process, leading to suboptimal estimation. The subtleties of the generative process are however captured in the data itself and we can `learn to infer', that is, learn a direct mapping from observations to explanatory latent variables. In this work we propose a hybrid model that combines graphical inference with a learned inverse model, which we structure as in a graph neural network, while the iterative algorithm as a whole is formulated as a recurrent neural network. By using cross-validation we can automatically balance the amount of work performed by graphical inference versus learned inference. We apply our ideas to the Kalman filter, a Gaussian hidden Markov model for time sequences, and show, among other things, that our model can estimate the trajectory of a noisy chaotic Lorenz Attractor much more accurately than either the learned or graphical inference run in isolation.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
03/04/2020

Neural Enhanced Belief Propagation on Factor Graphs

A graphical model is a structured representation of locally dependent ra...
research
02/22/2016

Inference Networks for Sequential Monte Carlo in Graphical Models

We introduce a new approach for amortizing inference in directed graphic...
research
04/10/2018

Graphical Generative Adversarial Networks

We propose Graphical Generative Adversarial Networks (Graphical-GAN) to ...
research
06/02/2016

Adversarially Learned Inference

We introduce the adversarially learned inference (ALI) model, which join...
research
06/09/2022

Accurate Node Feature Estimation with Structured Variational Graph Autoencoder

Given a graph with partial observations of node features, how can we est...
research
09/12/2022

Amortised Inference in Structured Generative Models with Explaining Away

A key goal of unsupervised learning is to go beyond density estimation a...
research
02/14/2012

Sequential Inference for Latent Force Models

Latent force models (LFMs) are hybrid models combining mechanistic princ...

Please sign up or login with your details

Forgot password? Click here to reset