Color Refinement, Homomorphisms, and Hypergraphs

03/29/2019 ∙ by Jan Böker, et al. ∙ 0

Recent results show that the structural similarity of graphs can be characterized by counting homomorphisms to them: the Tree Theorem states that the well-known color-refinement algorithm does not distinguish two graphs G and H if and only if, for every tree T, the number of homomorphisms Hom(T,G) from T to G is equal to the corresponding number Hom(T,H) from T to H (Dell, Grohe, Rattan 2018). We show how this approach transfers to hypergraphs by introducing a generalization of color refinement. We prove that it does not distinguish two hypergraphs G and H if and only if, for every connected Berge-acyclic hypergraph B, we have Hom(B,G) = Hom(B,H). To this end, we show how homomorphisms of hypergraphs and of a colored variant of their incidence graphs are related to each other. This reduces the above statement to one about vertex-colored graphs.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.