Collaborative Filtering vs. Content-Based Filtering: differences and similarities

12/18/2019
by   Rafael Glauber, et al.
0

Recommendation Systems (SR) suggest items exploring user preferences, helping them with the information overload problem. Two approaches to SR have received more prominence, Collaborative Filtering, and Content-Based Filtering. Moreover, even though studies are indicating their advantages and disadvantages, few results empirically prove their characteristics, similarities, and differences. In this work, an experimental methodology is proposed to perform comparisons between recommendation algorithms for different approaches going beyond the "precision of the predictions". For the experiments, three algorithms of recommendation were tested: a baseline for Collaborative Filtration and two algorithms for Content-based Filtering that were developed for this evaluation. The experiments demonstrate the behavior of these systems in different data sets, its main characteristics and especially the complementary aspect of the two main approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset