Coded Computing for Master-Aided Distributed Computing Systems

10/21/2020
by   Haoning Chen, et al.
0

We consider a MapReduce-type task running in a distributed computing model which consists of K edge computing nodes distributed across the edge of the network and a Master node that assists the edge nodes to compute output functions. The Master node and the edge nodes, both equipped with some storage memories and computing capabilities, are connected through a multicast network. We define the communication time spent during the transmission for the sequential implementation (all nodes send symbols sequentially) and parallel implementation (the Master node can send symbols during the edge nodes' transmission), respectively. We propose a mixed coded distributed computing scheme that divides the system into two subsystems where the coded distributed computing (CDC) strategy proposed by Songze Li et al. is applied into the first subsystem and a novel master-aided CDC strategy is applied into the second subsystem. We prove that this scheme is optimal, i.e., achieves the minimum communication time for both the sequential and parallel implementation, and establish an optimal information-theoretic tradeoff between the overall communication time, computation load, and the Master node's storage capacity. It demonstrates that incorporating a Master node with storage and computing capabilities can further reduce the communication time. For the sequential implementation, we deduce the approximately optimal file allocation between the two subsystems, which shows that the Master node should map as many files as possible in order to achieve smaller communication time. For the parallel implementation, if the Master node's storage and computing capabilities are sufficiently large (not necessary to store and map all files), then the proposed scheme requires at most 1/2 of the minimum communication time of system without the help of the Master node.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset