CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT (Extended Version)

03/18/2021 ∙ by Paolo Felli, et al. ∙ 0

Conformance checking is a key process mining task for comparing the expected behavior captured in a process model and the actual behavior recorded in a log. While this problem has been extensively studied for pure control-flow processes, conformance checking with multi-perspective processes is still at its infancy. In this paper, we attack this challenging problem by considering processes that combine the data and control-flow dimensions. In particular, we adopt data Petri nets (DPNs) as the underlying reference formalism, and show how solid, well-established automated reasoning techniques can be effectively employed for computing conformance metrics and data-aware alignments. We do so by introducing the CoCoMoT (Computing Conformance Modulo Theories) framework, with a fourfold contribution. First, we show how SAT-based encodings studied in the pure control-flow setting can be lifted to our data-aware case, using SMT as the underlying formal and algorithmic framework. Second, we introduce a novel preprocessing technique based on a notion of property-preserving clustering, to speed up the computation of conformance checking outputs. Third, we provide a proof-of-concept implementation that uses a state-of-the-art SMT solver and report on preliminary experiments. Finally, we discuss how CoCoMoT directly lends itself to a number of further tasks, like multi- and anti-alignments, log analysis by clustering, and model repair.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.