Co-clustering separately exchangeable network data

12/17/2012
by   David Choi, et al.
0

This article establishes the performance of stochastic blockmodels in addressing the co-clustering problem of partitioning a binary array into subsets, assuming only that the data are generated by a nonparametric process satisfying the condition of separate exchangeability. We provide oracle inequalities with rate of convergence O_P(n^-1/4) corresponding to profile likelihood maximization and mean-square error minimization, and show that the blockmodel can be interpreted in this setting as an optimal piecewise-constant approximation to the generative nonparametric model. We also show for large sample sizes that the detection of co-clusters in such data indicates with high probability the existence of co-clusters of equal size and asymptotically equivalent connectivity in the underlying generative process.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro