Clustering by the way of atomic fission

06/27/2019
by   Shizhan Lu, et al.
0

Cluster analysis which focuses on the grouping and categorization of similar elements is widely used in various fields of research. Inspired by the phenomenon of atomic fission, a novel density-based clustering algorithm is proposed in this paper, called fission clustering (FC). It focuses on mining the dense families of a dataset and utilizes the information of the distance matrix to fissure clustering dataset into subsets. When we face the dataset which has a few points surround the dense families of clusters, K-nearest neighbors local density indicator is applied to distinguish and remove the points of sparse areas so as to obtain a dense subset that is constituted by the dense families of clusters. A number of frequently-used datasets were used to test the performance of this clustering approach, and to compare the results with those of algorithms. The proposed algorithm is found to outperform other algorithms in speed and accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset