clusterBMA: Bayesian model averaging for clustering

09/09/2022
by   Owen Forbes, et al.
32

Various methods have been developed to combine inference across multiple sets of results for unsupervised clustering, within the ensemble and consensus clustering literature. The approach of reporting results from one `best' model out of several candidate clustering models generally ignores the uncertainty that arises from model selection, and results in inferences that are sensitive to the particular model and parameters chosen, and assumptions made, especially with small sample size or small cluster sizes. Bayesian model averaging (BMA) is a popular approach for combining results across multiple models that offers some attractive benefits in this setting, including probabilistic interpretation of the combine cluster structure and quantification of model-based uncertainty. In this work we introduce clusterBMA, a method that enables weighted model averaging across results from multiple unsupervised clustering algorithms. We use a combination of clustering internal validation criteria as a novel approximation of the posterior model probability for weighting the results from each model. From a combined posterior similarity matrix representing a weighted average of the clustering solutions across models, we apply symmetric simplex matrix factorisation to calculate final probabilistic cluster allocations. This method is implemented in an accompanying R package. We explore the performance of this approach through a case study that aims to to identify probabilistic clusters of individuals based on electroencephalography (EEG) data. We also use simulated datasets to explore the ability of the proposed technique to identify robust integrated clusters with varying levels of separations between subgroups, and with varying numbers of clusters between models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset