Cluster Consensus on Matrix-weighted Switching Networks

07/20/2021
by   Lulu Pan, et al.
0

This paper examines the cluster consensus problem of multi-agent systems on matrix-weighted switching networks. Necessary and/or sufficient conditions under which cluster consensus can be achieved are obtained and quantitative characterization of the steady-state of the cluster consensus are provided as well. Specifically, if the underlying network switches amongst finite number of networks, a necessary condition for cluster consensus of multi-agent system on switching matrix-weighted networks is firstly presented, it is shown that the steady-state of the system lies in the intersection of the null space of matrix-valued Laplacians corresponding to all switching networks. Second, if the underlying network switches amongst infinite number of networks, the matrix-weighted integral network is employed to provide sufficient conditions for cluster consensus and the quantitative characterization of the corresponding steady-state of the multi-agent system, using null space analysis of matrix-valued Laplacian related of integral network associated with the switching networks. In particular, conditions for the bipartite consensus under the matrix-weighted switching networks are examined. Simulation results are finally provided to demonstrate the theoretical analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset