Cloud-based Image Classification Service Is Not Robust To Simple Transformations: A Forgotten Battlefield

06/19/2019
by   Dou Goodman, et al.
8

Many recent works demonstrated that Deep Learning models are vulnerable to adversarial examples.Fortunately, generating adversarial examples usually requires white-box access to the victim model, and the attacker can only access the APIs opened by cloud platforms. Thus, keeping models in the cloud can usually give a (false) sense of security.Unfortunately, cloud-based image classification service is not robust to simple transformations such as Gaussian Noise, Salt-and-Pepper Noise, Rotation and Monochromatization. In this paper,(1) we propose one novel attack method called Image Fusion(IF) attack, which achieve a high bypass rate,can be implemented only with OpenCV and is difficult to defend; and (2) we make the first attempt to conduct an extensive empirical study of Simple Transformation (ST) attacks against real-world cloud-based classification services. Through evaluations on four popular cloud platforms including Amazon, Google, Microsoft, Clarifai, we demonstrate that ST attack has a success rate of approximately 100 50 services. (3) We discuss the possible defenses to address these security challenges.Experiments show that our defense technology can effectively defend known ST attacks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset