Closing the Learning-Planning Loop with Predictive State Representations

12/12/2009
by   Byron Boots, et al.
0

A central problem in artificial intelligence is that of planning to maximize future reward under uncertainty in a partially observable environment. In this paper we propose and demonstrate a novel algorithm which accurately learns a model of such an environment directly from sequences of action-observation pairs. We then close the loop from observations to actions by planning in the learned model and recovering a policy which is near-optimal in the original environment. Specifically, we present an efficient and statistically consistent spectral algorithm for learning the parameters of a Predictive State Representation (PSR). We demonstrate the algorithm by learning a model of a simulated high-dimensional, vision-based mobile robot planning task, and then perform approximate point-based planning in the learned PSR. Analysis of our results shows that the algorithm learns a state space which efficiently captures the essential features of the environment. This representation allows accurate prediction with a small number of parameters, and enables successful and efficient planning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro