Closed-Loop Wireless Power Transfer with Adaptive Waveform and Beamforming: Design, Prototype, and Experiment

06/07/2021 ∙ by Shanpu Shen, et al. ∙ 0

In this paper, we design, prototype, and experiment a closed-loop radiative wireless power transfer (WPT) system with adaptive waveform and beamforming using limited feedback. Spatial and frequency domains are exploited by jointly utilizing multi-sine waveform and multi-antenna beamforming at the transmitter in WPT system to adapt to the multipath fading channel and boost the output dc power. A closed-loop architecture based on a codebook design and a low complexity over-the-air limited feedback using an IEEE 802.15.4 RF interface is proposed. The codebook consists of multiple codewords where each codeword represents particular waveform and beamforming. The transmitter sweeps through the codebook and then the receiver feeds back the index of the optimal codeword, so that the waveform and beamforming can be adapted to the multipath fading channel to maximize the output dc power without requiring explicit channel estimation and the knowledge of accurate Channel State Information. The proposed closed-loop WPT with adaptive waveform and beamforming using limited feedback is prototyped using a Software Defined Radio equipment and measured in a real indoor environment. The measurement results show that the proposed closed-loop WPT with adaptive waveform and beamforming can increase the output dc power by up to 14.7 dB compared with the conventional single-tone and single-antenna WPT system.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 4

page 5

page 6

page 7

page 8

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.