Close Category Generalization

11/17/2020
by   Yao-Yuan Yang, et al.
13

Out-of-distribution generalization is a core challenge in machine learning. We introduce and propose a solution to a new type of out-of-distribution evaluation, which we call close category generalization. This task specifies how a classifier should extrapolate to unseen classes by considering a bi-criteria objective: (i) on in-distribution examples, output the correct label, and (ii) on out-of-distribution examples, output the label of the nearest neighbor in the training set. In addition to formalizing this problem, we present a new training algorithm to improve the close category generalization of neural networks. We compare to many baselines, including robust algorithms and out-of-distribution detection methods, and we show that our method has better or comparable close category generalization. Then, we investigate a related representation learning task, and we find that performing well on close category generalization correlates with learning a good representation of an unseen class and with finding a good initialization for few-shot learning. Code available at https://github.com/yangarbiter/close-category-generalization

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset