Clock synchronization over networks -- Identifiability of the sawtooth model
In this paper, we analyze the two-node joint clock synchronization and ranging problem. We focus on the case of nodes that employ time-to-digital converters to determine the range between them precisely. This specific design leads to a sawtooth model for the captured signal, which has not been studied in detail before from an estimation theory standpoint. In the study of this model, we recover the basic conclusion of a well-known article by Freris, Graham, and Kumar in clock synchronization. Additionally, we discover a surprising identifiability result on the sawtooth signal model: noise improves the theoretical condition of the estimation of the phase and offset parameters. To complete our study, we provide performance references for joint clock synchronization and ranging. In particular, we present the Cramér-Rao lower bounds that correspond to a linearization of our model, as well as a simulation study on the practical performance of basic estimation strategies under realistic parameters. With these performance references, we enable further research in estimation strategies using the sawtooth model and pave the path towards industrial use.
READ FULL TEXT