Classifying Single-Trial EEG during Motor Imagery with a Small Training Set
Before the operation of a motor imagery based brain-computer interface (BCI) adopting machine learning techniques, a cumbersome training procedure is unavoidable. The development of a practical BCI posed the challenge of classifying single-trial EEG with a small training set. In this letter, we addressed this problem by employing a series of signal processing and machine learning approaches to alleviate overfitting and obtained test accuracy similar to training accuracy on the datasets from BCI Competition III and our own experiments.
READ FULL TEXT