Classification of Epileptic EEG Signals by Wavelet based CFC

05/04/2018
by   Amirmasoud Ahmadi, et al.
0

Electroencephalogram, an influential equipment for analyzing humans activities and recognition of seizure attacks can play a crucial role in designing accurate systems which can distinguish ictal seizures from regular brain alertness, since it is the first step towards accomplishing a high accuracy computer aided diagnosis system (CAD). In this article a novel approach for classification of ictal signals with wavelet based cross frequency coupling (CFC) is suggested. After extracting features by wavelet based CFC, optimal features have been selected by t-test and quadratic discriminant analysis (QDA) have completed the Classification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro