Classification of 12-Lead ECG Signals with Bi-directional LSTM Network

11/05/2018
by   Ahmed Mostayed, et al.
0

We propose a recurrent neural network classifier to detect pathologies in 12-lead ECG signals and train and validate the classifier with the Chinese physiological signal challenge dataset (http://www.icbeb.org/Challenge.html). The recurrent neural network consists of two bi-directional LSTM layers and can train on arbitrary-length ECG signals. Our best trained model achieved an average F1 score of 74.15 Keywords: ECG classification, Deep learning, RNN, Bi-directional LSTM, QRS detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro