Cheaper and Better: Selecting Good Workers for Crowdsourcing

02/03/2015
by   Hongwei Li, et al.
0

Crowdsourcing provides a popular paradigm for data collection at scale. We study the problem of selecting subsets of workers from a given worker pool to maximize the accuracy under a budget constraint. One natural question is whether we should hire as many workers as the budget allows, or restrict on a small number of top-quality workers. By theoretically analyzing the error rate of a typical setting in crowdsourcing, we frame the worker selection problem into a combinatorial optimization problem and propose an algorithm to solve it efficiently. Empirical results on both simulated and real-world datasets show that our algorithm is able to select a small number of high-quality workers, and performs as good as, sometimes even better than, the much larger crowds as the budget allows.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset