ChASE – A Distributed Hybrid CPU-GPU Eigensolver for Large-scale Hermitian Eigenvalue Problems

05/05/2022
by   Xinzhe Wu, et al.
0

As modern massively parallel clusters are getting larger with beefier compute nodes, traditional parallel eigensolvers, such as direct solvers, struggle keeping the pace with the hardware evolution and being able to scale efficiently due to additional layers of communication and synchronization. This difficulty is especially important when porting traditional libraries to heterogeneous computing architectures equipped with accelerators, such as Graphics Processing Unit (GPU). Recently, there have been significant scientific contributions to the development of filter-based subspace eigensolver to compute partial eigenspectrum. The simpler structure of these type of algorithms makes for them easier to avoid the communication and synchronization bottlenecks typical of direct solvers. The Chebyshev Accelerated Subspace Eigensolver (ChASE) is a modern subspace eigensolver to compute partial extremal eigenpairs of large-scale Hermitian eigenproblems with the acceleration of a filter based on Chebyshev polynomials. In this work, we extend our previous work on ChASE by adding support for distributed hybrid CPU-multi-GPU computing architectures. Our tests show that ChASE achieves very good scaling performance up to 144 nodes with 526 NVIDIA A100 GPUs in total on dense eigenproblems of size up to 360k.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset