Characterizations of the set of integer points in an integral bisubmodular polyhedron
In this note, we provide two characterizations of the set of integer points in an integral bisubmodular polyhedron. Our characterizations do not require the assumption that a given set satisfies the hole-freeness, i.e., the set of integer points in its convex hull coincides with the original set. One is a natural multiset generalization of the exchange axiom of a delta-matroid, and the other comes from the notion of the tangent cone of an integral bisubmodular polyhedron.
READ FULL TEXT