Characterization of surface motion patterns in highly deformable soft tissue organs from dynamic Magnetic Resonance Imaging

10/05/2020
by   Karim Makki, et al.
0

In this work, we present a pipeline for characterization of bladder surface dynamics during deep respiratory movements from dynamic Magnetic Resonance Imaging (MRI). Dynamic MRI may capture temporal anatomical changes in soft tissue organs with high-contrast but the obtained sequences usually suffer from limited volume coverage which makes the high resolution reconstruction of organ shape trajectories a major challenge in temporal studies. For a compact shape representation, the reconstructed temporal data with full volume coverage are first used to establish a subject-specific dynamical 4D mesh sequences using the large deformation diffeomorphic metric mapping (LDDMM) framework. Then, we performed a statistical characterization of organ shape changes from mechanical parameters such as mesh elongations and distortions. Since shape space is curved, we have also used the intrinsic curvature changes as metric to quantify surface evolution. However, the numerical computation of curvature is strongly dependant on the surface parameterization (i.e. the mesh resolution). To cope with this dependency, we propose a non-parametric level set method to evaluate spatio-temporal surface evolution. Independent of parameterization and minimizing the length of the geodesic curves, it shrinks smoothly the surface curves towards a sphere by minimizing a Dirichlet energy. An Eulerian PDE approach is used for evaluation of surface dynamics from the curve-shortening flow. Results demonstrate the numerical stability of the derived descriptor throughout smooth continuous-time organ trajectories. Intercorrelations between individuals' motion patterns from different geometric features are computed using the Laplace-Beltrami Operator (LBO) eigenfunctions for spherical mapping.

READ FULL TEXT

page 4

page 6

page 10

page 12

page 14

page 23

page 24

page 25

research
03/17/2017

Numerical Simulation of Bloch Equations for Dynamic Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a widely applied non-invasive imagin...
research
03/18/2020

A new geodesic-based feature for characterization of 3D shapes: application to soft tissue organ temporal deformations

In this paper, we propose a method for characterizing 3D shapes from poi...
research
09/04/2015

A statistical shape space model of the palate surface trained on 3D MRI scans of the vocal tract

We describe a minimally-supervised method for computing a statistical sh...
research
08/25/2017

Accelerated Reconstruction of Perfusion-Weighted MRI Enforcing Jointly Local and Nonlocal Spatio-temporal Constraints

Perfusion-weighted magnetic resonance imaging (MRI) is an imaging techni...
research
01/14/2020

Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation

Recently developed methods for rapid continuous volumetric two-photon mi...
research
01/19/2012

Progress in animation of an EMA-controlled tongue model for acoustic-visual speech synthesis

We present a technique for the animation of a 3D kinematic tongue model,...
research
12/15/2016

A Multilinear Tongue Model Derived from Speech Related MRI Data of the Human Vocal Tract

We present a multilinear statistical model of the human tongue that capt...

Please sign up or login with your details

Forgot password? Click here to reset